CONCERNING THE STRUCTURE OF 5-AMINODEHYDROLEVULINIC ACID AND ITS DERIVATIVES

Josefina Awruch and Benjamin Frydman

Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires,

Junin 956, Buenos Aires, Argentina

(Received in USA 7 July 1976; received in UK for publication 1 October 1976)

The enzymatic oxidation of porphobilinogen 1 by porphobilinogen oxygenase affords as a main product 3-(β -carboxyethyl)-4-carboxymethyl-5-aminomethyl-5-hydroxy-3-pyrrolin-2-one 2.

Structure 2 was advanced by us on reactions of 2¹. It is a well known fact that free δ -(and δ -) aminoacid

esters exist in the cyclic form. Thus, the methyl ester of δ -aminocrotonic acid exist as the Δ^3 -pyrrolinome 2 , the ethyl esters of N-substituted aminomethylensuccinic acids exist as Δ^4 pyrrolinones³, and the diethyl esters of meso- and rac-4,5-diaminosuberates cyclize readily to the decahydro-1,5-naphthyridin-2,6-diones⁴. The situation could be different however, in the case of δ -keto- \propto , β -unsaturated amides, acids, or esters where the tautomeric equilibrium may be displaced toward the open form (Scheme I).

Hence, the structure 2 needs a further synthetic confirmation. Moreover, if 2 is the stable form of a ℓ -keto- \ll, β -unsaturated amide, then the synthesis of 2 can be planned as a synthesis of the latter compound.

There is a report⁵ that describes the preparation of the phthaloyl derivative of 5-

structures, and that the derived amide

amino-4-keto-2,3-dehydropentanoic acid (dehydroaminolevulinic acid) and of its ethyl ester. Both compounds were described as possesing the open chain structure 3, and not the cyclic pseudo-acid or pseudo-ester structure. This may cast a doubt on the validity of proposing a cyclic structure for the amide derivatives of the χ keto- \propto , β -unsaturated acids (Scheme I). We repeated the synthesis of 3 and found that the acid as well as the ester exist as the cyclic

and the dimethoxydihydrofuran $\underline{4}$ was obtained as a mixture of isomers (Scheme II). Oxidation of $\underline{4}$ with chromic acid in dilute sulfuric acid afforded 5-phthalimidomethyl-5-hydroxy-2,5-dihydrofuran-2-one $\underline{5}$ in 80% yield: m.p. 74-80° (from water; lit⁵ gives m.p. 163° for compound $\underline{3}$, R=H). Structure $\underline{5}$ was secured on the basis of its nuclear magnetic resonance spectrum⁶; nmr (CDCl₃), $\overline{5}$ 3.37 (b, 1H, OH, disappeared on deuterium exchange with D₂O), 4.15 (d, 2H, CH₂), 6.05 (d, 1H, J=6Hz, =CH-CO), 7.25 (d, 1H, J=6Hz, =CH-C(OH)-CH₂N), 7.78 (m, 4H, C₆H₄); its infrared spectrum, ir (Nujol), 3500 cm⁻¹ (OH),1780 cm⁻¹ (lactone CO), 1715 cm⁻¹ ((CO)₂NPh); and its elemental analysis; Calc. for C₁₃H₉NO₅: H, 3.5; C, 60.2. Found: C, 60.3; H, 3.6. The coupling constant of the vinylic protons is compatible only with a cis structure.

When <u>5</u> dissolved in methanol was reduced with hydrogen over 10% palladium on charcoal at 40 psi the 5-methoxy-tetrahydrofuran <u>6</u> was obtained in quantitative yields. It was a mixture

of both possible isomers which were obtained in approximately equal amounts by crystallization from methanol; mp 142° (from methanol), mp 74-76° (from methanol-water). The structure <u>6</u> was secured for both isomers by elemental analysis, by their very similar nmr spectra; nmr (CDCl₃), $\sqrt{2.75}$ (m, 4H, CH₂CH₂), 3.65 (s, 3H, OCH₃), 4.5 (s, 2H, >NCH₂), 7.8 (m, 4H, C₆H₄(CO)₂); by their ir spectra (Nujol), 1790 cm⁻¹ (lactone CO), 1750 cm⁻¹ (Ph (<u>CO</u>)₂); and by their mass spectra (Scheme III).

Scheme III

The existence of two isomers of $\underline{6}$ is by itself an evidence of its cyclic structure. When either isomer was heated under reflux with 6N hydrochloric acid it was transformed into the hydrochloride of 5-aminolevulinic acid 7.

By treatment of 5 with 5% sulfuric acid in ethanol at 20° during 15 hr the pseudoester 8 was obtained in 60% yield as an inseparable mixture of isomers; mp 140-161° (from ethanol; lit⁵ gives mp 97° for structure 3, $R=C_2H_5$). The structure of 8 was secured by its nmr spectrum: nmr (CDCl₃), 5 1.16 (t, 3H, CH₃), 3.43 (q, 2H, CH₂CH₃), 4.1 (s, 2H, N-CH₂), 6.05 (d, 1H, J=6Hz, =<u>CH</u>-CO), 7.12 (d, 1H, =<u>CH</u>-C-OC₂H₅), 7.72 (d, 4H, C₆H₄); its ir spectrum (Nujol), 1785 cm⁻¹, 1715 cm⁻¹; and its elemental analysis: Calc. for $C_{15}H_{13}NO_5$; C, 62.7; H, 4.5; N, 4.9. Found: C, 62.8; H, 4.7; N, 4.6.

When $\underline{\theta}$ was treated with ethanol saturated with ammonia and the mixture was kept overnight at room temperature in a closed vessel, ammonolysis took place and the pyrrolinone $\underline{\theta}$ was obtained in 50% yield; mp 90-92° (from water). Structure $\underline{\theta}$ was established on the basis of its nmr spectrum (DMSO-d₆), δ 3.45 (b, 1H, OH), 3.85 (s, 2H, CH₂); 5.85 (d, 1H, J=6Hz, =CH-CO), 6.9 (d, 1H, J=6Hz, =<u>CH</u>-C(OH) CH₂), 7.85 (s, 4H, C₆H₄); 8.2 (s, 1H, NH); its ir spectrum (Nujol) 3550 cm⁻¹ (OH), 3450 cm⁻¹ (NH), 1785 cm⁻¹ (lactone CO), 1715 cm⁻¹ (Ph (CO)₂); and its mass spectrum: m/e (relative intensity), 258 [M⁺] (10%), 240 [M⁺-H₂O, characteristic fragmentation of a 5-hydroxy-pyrrolin-2-one⁷ (42%), 161 (Ph (CO)₂ $\overset{+}{N-CH}_3$, formed by H transfer) (100%), 148 (Ph (CO)₂ NH₂)⁺ (80%). The OH and NH peaks in the nmr spectrum disappeared promptly on exchange with D₂O.

These results indicate that the 5-aminodehydrolevulinic acid derivative obtained by the oxidation of the dihydrofuran $\underline{4}$ exist in the pseudoacid form and that its amide is in fact a 5-hydroxy-3-pyrrolin-2-one. Kinetic evidence⁸ seemed to lend support to the proposal that the tautomeric equilibrium between the open and cyclic forms of \mathcal{J} -keto- $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ -unsaturated acids is displaced toward the latter forms only when the C=C double bond is substituted with alkyl groups. The data discussed above indicate however, that even cis-acids, esters, and amides, unsubstituted on the double bond, exist entirely in the cyclic hemiacetal structures.

REFERENCES

- R.B. Frydman, M.L. Tomaro, A. Wanschelbaum, E. Andersen, J. Awruch and B. Frydman, <u>Biochemistry</u>, <u>12</u>, 5253 (1973).
- 2. W. Langenbeck and H. Boser, Chem. Ber., 84, 526 (1951).
- 3. C.A. Grob and P. Ankli, Helv. Chem. Acta, 32, 2010 (1949).
- 4. B. Frydman, M. Los and H. Rapoport, J. Org. Chem., 36, 450 (1971).
- 5. L. Pichat, J. Loheac and M. Herbert, Bull. Soc. Chim. France, (11), 3564 (1966).
- All nuclear magnetic resonance spectra were run on a Perkin-Elmer R-12 instrument; infrared spectra were recorded on a Perkin-Elmer 21 instrument.
- 7. J. Awruch and B. Frydman, Tetrahedron Lett., 2611 (1973).
- 8. R. Scheffold and P. Dubs, Helv. Chim. Acta, 50, 798 (1967).

Acknowledgment. This work was generously supported by grants from the National Institutes of Health (GM-11973) and the Consejo Nacional de Investigaciones (Argentina).